Квантовая физика — детям
Про книжные полки, лесенки и Ивана Ивановича
Все процессы, явления и величины в окружающем нас мире можно разделить на две группы: непрерывные (по-научному континуальные) и прерывные (по-научному дискретные или квантованные).
Представьте себе стол, на который можно положить книгу. Вы можете положить книгу в любое место на столе. Справа, слева, посередине… Куда хотите — туда и положите. В этом случае физики говорят, что положение книги на столе изменяется непрерывно.
А теперь представьте книжные полки. Вы можете поставить книгу на первую полку, на вторую, на третью или на четвёртую — однако не можете поставить книгу «где-то между третьей и четвёртой». В этом случае положение книги изменяется прерывно, дискретно, квантованно (все эти слова обозначают одно и то же).
Окружающий мир полон непрерывных и квантованных величин. Вот две девочки — Катя и Маша. Их рост 135 и 136 сантиметров. Какая это величина? Рост изменяется непрерывно, он может быть и 135 с половиной сантиметров, и 135 сантиметров с четвертью. А вот номер школы, в которой девочки учатся — это величина квантованная! Допустим, Катя учится в школе № 135, а Маша — в школе № 136. Однако никто из них не может учиться в школе № 135 с половиной, правда?
Другой пример квантованной системы — шахматная доска. На шахматной доске 64 клетки, и каждая фигура может занимать только одну клетку. Можем ли мы поставить пешку где-то между клетками или поставить на одну клетку сразу две пешки? Фактически — можем, но по правилам — нет.
А вот горка на детской площадке. Дети скатываются с неё вниз — потому что высота горки изменяется плавно, непрерывно. Теперь представьте себе, что эта горка вдруг (взмах волшебной палочки!) превратилась в лестницу. Скатиться с неё на попе уже не выйдет. Придётся идти ногами — сперва один шаг, потом второй, потом третий. Величина (высота) у нас изменялась непрерывно — а стала изменяться шагами, то есть дискретно, квантованно.
Давайте проверим!
1. Сосед по даче Иван Иванович отправился в соседнюю деревню и сказал «отдохну где-нибудь по дороге».
2. Сосед по даче Иван Иванович отправился в соседнюю деревню и сказал «поеду каким-нибудь автобусом».
Какая из этих двух ситуаций («систем») может считаться непрерывной, а какая — квантованной?
Ответ:
В первом случае Иван Иванович идёт пешком и может остановиться отдохнуть в абсолютно любой точке. Значит, данная система — непрерывная.
Во втором — Иван Иванович может сесть в подошедший на остановку автобус. Может пропустить и подождать следующего автобуса. Но вот сесть «где-то между» автобусами у него не получится. Значит, данная система — квантованная!
Во всём виновата астрономия
О существовании непрерывных (континуальных) и прерывных (квантованных, разрывных, дискретных) величин прекрасно знали ещё древние греки. В своей книге «Псаммит» («Исчисление песчинок») Архимед даже сделал первую попытку установить математическую связь между непрерывными и квантованными величинами. Тем не менее, никакой квантовой физики в те времена не существовало.
Её не существовало вплоть до самого начала 20 века! Такие великие физики, как Галилей, Декарт, Ньютон, Фарадей, Юнг или Максвелл слыхом не слыхивали ни про какую квантовую физику и прекрасно без неё обходились. Вы можете спросить: зачем же тогда учёные придумали квантовую физику? Что такое особенное в физике приключилось? Представьте себе, приключилось. Только совсем не в физике, а в астрономии!
Загадочный спутник
В 1844 году немецкий астроном Фридрих Бессель наблюдал самую яркую звезду нашего ночного неба — Сириус. К тому времени астрономы уже знали, что звёзды в нашем небе не являются неподвижными — они движутся, только очень-очень медленно. При этом каждая звезда — это важно! — движется по прямой линии. Так вот, при наблюдениях Сириуса оказалось, что он движется совсем не по прямой. Звезду как бы «шатало» то в одну сторону, то в другую. Путь Сириуса в небе был похож на извилистую линию, которую математики называют «синусоида».
Было понятно, что сама по себе звезда так двигаться не может. Чтобы превратить движение по прямой линии в движение по синусоиде, нужна некая «возмущающая сила». Поэтому Бессель предположил, что вокруг Сириуса вращается тяжёлый спутник — это было самое естественное и разумное объяснение.
Однако расчёты показывали, что масса этого спутника должна быть приблизительно как у нашего с вами Солнца. Тогда почему же мы не видим этот спутник с Земли? Сириус расположен от солнечной системы недалеко — каких-то два с половиной парсека, и объект размером с Солнце должен быть виден очень хорошо…
Трудная получалась задачка. Одни учёные говорили, что этот спутник представляет собой холодную, остывшую звезду — поэтому она абсолютно чёрная и невидима с нашей планеты. Другие говорили, что этот спутник не чёрный, а прозрачный, — потому мы его и не видим. Астрономы всего мира смотрели на Сириус в телескопы и пытались «поймать» загадочный невидимый спутник, а он как будто издевался над ними. Было от чего удивиться, сами понимаете…
Нам нужен чудо-телескоп!
В середине 19-го века в США жил и работал выдающийся конструктор телескопов Элвин Кларк. По первой профессии он был художником, но волей случая превратился в первоклассного инженера, стеклодела и астронома. До сих пор никто не сумел превзойти его потрясающие линзовые телескопы! Один из объективов работы Элвина Кларка (диаметром 76 сантиметров) можно увидеть в Санкт-Петербурге, в музее Пулковской обсерватории…
Однако мы отвлеклись. Итак, в 1867 году Элвин Кларк построил новый телескоп — с объективом диаметром 47 сантиметров; это был самый большой телескоп в США на тот момент. В качестве первого небесного объекта для наблюдений на испытаниях был выбран именно загадочный Сириус. И надежды астрономов блестяще оправдались — в первую же ночь неуловимый спутник Сириуса, предсказанный Бесселем, был обнаружен.
Из огня да в полымя…
Однако, получив данные наблюдений Кларка, астрономы радовались совсем недолго. Ведь, согласно расчётам, масса спутника должна быть приблизительно такая же, как у нашего Солнца (в 333 000 раз больше массы Земли). Но вместо огромного чёрного (или прозрачного) небесного светила астрономы увидели… крохотную белую звёздочку! Эта звёздочка была очень горячей (25 000 градусов, сравните с 5 500 градусами нашего Солнышка) и одновременно крохотной (по космическим меркам), размерами не больше Земли (впоследствии такие звёзды назвали «белыми карликами»). Получалось, что у этой звёздочки совершенно невообразимая плотность. Из какого же она тогда состоит вещества?!
На Земле мы знаем материалы с высокой плотностью — скажем, это свинец (кубик со стороной в сантиметр, сделанный из этого металла, весит 11.3 грамма) или золото (19.3 грамма на кубический сантиметр). Плотность вещества спутника Сириуса (его назвали «Сириус Б») составляет миллион (!!!) граммов на кубический сантиметр — оно в 52 тысячи раз тяжелее золота!
Возьмём, например, обычный спичечный коробок. Его объём — 28 кубических сантиметров. Значит, спичечный коробок, наполненный веществом спутника Сириуса, будет весить… 28 тонн! Попробуйте представить — на одной чашке весов спичечный коробок, а на второй — танк!
Была ещё одна проблема. В физике есть закон, который называется законом Шарля. Он утверждает, что в одном и том же объёме давление вещества тем выше, чем выше температура этого вещества. Вспомните, как срывает давлением горячего пара крышку с закипевшего чайника — и сразу поймёте, о чём речь. Так вот, температура вещества спутника Сириуса этот самый закон Шарля нарушала самым бессовестным образом! Давление было невообразимым, а температура — относительно низкой. В итоге получались «неправильные» физические законы и вообще «неправильная» физика. Как у Винни-Пуха — «неправильные пчёлы и неправильный мёд».
Совсем голова кругом…
Чтобы «спасти» физику, в начале 20 века учёным пришлось признать, что в мире существует сразу ДВЕ физики — одна «классическая», известная уже две тысячи лет. А вторая — необычная, квантовая. Учёные предположили, что на обычном, «макроскопическом» уровне нашего мира работают законы классической физики. А вот на самом маленьком, «микроскопическом» уровне вещество и энергия подчиняются совершенно другим законам — квантовым.
Представьте себе нашу планету Земля. Вокруг неё сейчас вращается больше 15 000 самых разных искусственных объектов, каждый по своей орбите. Причём эту орбиту при желании можно поменять (скорректировать) — скажем, периодически корректируется орбита у Международной космической станции (МКС). Это макроскопический уровень, здесь работают законы классической физики (например, законы Ньютона).
А теперь перенесёмся на микроскопический уровень. Представьте себе ядро атома. Вокруг него, подобно спутникам, вращаются электроны — однако их не может быть сколь угодно много (скажем, у атома гелия — не больше двух). И орбиты у электронов будут уже не произвольные, а квантованные, «ступенчатые». Такие орбиты физики ещё называют «разрешёнными энергетическими уровнями». Электрон не может «плавно» перейти с одного разрешённого уровня на другой, он может только мгновенно «перепрыгнуть» с уровня на уровень. Только что был «там», и мгновенно оказался «тут». Он не может оказаться где-то между «там» и «тут». Он меняет местоположение мгновенно.
Удивительно? Удивительно! Но это ещё не всё. Дело в том, что, по законам квантовой физики, два одинаковых электрона не могут занимать один и тот же энергетический уровень. Никогда. Учёные называют это явление «запрет Паули» (почему этот «запрет» действует, они пока объяснить не могут). Больше всего этот «запрет» напоминает шахматную доску, которую мы приводили в качестве примера квантовой системы, — если на клетке доски стоит пешка, другую пешку на эту клетку уже не поставить. В точности то же самое происходит с электронами!
Решение задачи
Каким же образом — спросите вы — квантовая физика позволяет объяснять такие необычные явления, как нарушение закона Шарля внутри Сириуса Б? А вот каким.
Представьте себе городской парк, в котором есть танцевальная площадка. На улице гуляет много людей, они заходят на танцплощадку потанцевать. Пусть количество людей на улице обозначает давление, а количество людей на дискотеке — температуру. На танцплощадку может зайти огромное количество народу, — чем больше людей гуляет в парке, тем больше людей танцует на танцплощадке, то есть чем выше давление, тем выше температура. Так работают законы классической физики — в том числе закон Шарля. Такое вещество учёные называют «идеальным газом».
Однако на микроскопическом уровне законы классической физики не работают. Там начинают действовать квантовые законы, и это коренным образом меняет ситуацию.
Представим себе, что на месте танцплощадки в парке открыли кафе. В чём разница? Да в том, что в кафе, в отличие от дискотеки, «сколько угодно» людей не войдёт. Как только будут заняты все места за столиками, охрана прекратит пропускать людей внутрь. И пока кто-то из гостей не освободит столик, охрана никого не впустит! В парке гуляет всё больше и больше народу — а в кафе сколько людей было, столько и осталось. Получается, давление увеличивается, а температура «стоит на месте».
Внутри Сириуса Б, само собой, никаких людей, танцплощадок и кафе нет. Но принцип остаётся всё тот же: электроны заполняют все разрешенные энергетические уровни (как посетители — столики в кафе), и дальше никого «пустить» уже не могут — в точности согласно запрету Паули. В итоге внутри звезды получается невообразимо огромное давление, а вот температура при этом — высокая, но для звёзд вполне себе обыкновенная. Такое вещество в физике называется «вырожденным квантовым газом».
Продолжим?..
Аномально высокая плотность белых карликов — далеко не единственное явление в физике, требующее использования квантовых законов. Если эта тема вас заинтересовала, в следующих номерах «Лучика» мы можем поговорить и о других, не менее интересных, квантовых явлениях. Пишите! А пока давайте запомним главное:
1. В нашем с вами мире (Вселенной) на макроскопическом (т. е. «большом») уровне действуют законы классической физики. Они описывают свойства обычных жидкостей и газов, движения звёзд и планет и многое другое. Именно эту физику вы изучаете (или будете изучать) в школе.
2. Однако на микроскопическом (то есть невероятно маленьком, в миллионы раз меньше самых мелких бактерий) уровне действуют совершенно другие законы — законы квантовой физики. Законы эти описываются очень сложными математическими формулами, и в школе их не изучают. Однако только квантовая физика позволяет относительно внятно объяснить строение таких удивительных космических объектов, как белые карлики (вроде Сириуса Б), нейтронные звёзды, чёрные дыры и так далее.
* * *
Продолжение следует! В ноябрьском и декабрьском номерах журнала «Лучик», мы рассказываем о том, что такое коллапс волновой функции, принцип неопределённости, параллельные вселенные — и так далее.