5 простых математических фокусов
5 простых математических фокусов

5 простых математических фокусов

… и подробное объяснение, как они работают, для гуманитариев

От редакции

2

27.08.2016

Привить любовь к математике можно разными способами, и самый необычный из них — через фокусы. Для некоторых детей этот способ может стать самым действенным — появится реальный стимул тренироваться в устном счёте и разбираться в формулах. Сайт «Фокусы. Как научиться» собрал пять самых интересных математических фокусов, а «Мел» попросил учителя математики Дмитрия Коробченко объяснить, как они работают.

Математические фокусы — самые простые в исполнении. Для них не нужен реквизит, длительная подготовка и специальное место для демонстрации. Смысл таких фокусов — в отгадывании чисел, задуманных зрителями, или в каких-нибудь операциях над ними. Все чудеса основаны на математических закономерностях, такие фокусы можно проделывать на уроках алгебры и геометрии.

И хотя вместо цифр, геометрических фигур в некоторых фокусах мы будем использовать различные предметы, все они связаны с числами. Вначале попробуйте проделать самые простые фокусы. Только помните: эти фокусы с цифрами будут получаться только тогда, когда вы научитесь быстро считать в уме (а вот, кстати, несколько советов, как этому научиться). Поэтому начинать советуем с тренировки в устном счёте, причём от меньших цифр к большим.

Дмитрий Коробченко,

учитель математики:

Обобщить секрет всех подобных математических фокусов можно следующим образом: зритель загадывает некое случайное число (или числа). Затем мы предлагаем зрителю произвести с этим числом некоторые простые арифметические операции. В итоге у зрителя получается некий финальный результат («ответ»), и наша задача — либо (1) угадать этот результат, либо (2) по этому результату, который зритель нам сообщает, предсказать исходное загаданное число.


1. Угадай число

Содержание фокуса. Попросите любого зрителя задумать число. Потом это число зритель должен умножить на 2, прибавить к результату 8, разделить результат на 2 и задуманное число отнять. В результате вы смело называете число 4.

Пример. Зритель задумал число 7.

Дмитрий Коробченко:

Фокус относится к случаю (1). Загадано число X. Зритель выполняет следующие операции:

Мы получили 4 независимо от изначально загаданного числа.

Ответ: 4


2. Угаданный день рождения

Содержание фокуса. Объявите зрителям, что вы сможете угадать день рождения любого незнакомого человека, сидящего в зале. Вызовите любого желающего и предложите ему умножить на 2 число дня своего рождения. Затем пусть зритель сложит получившееся произведение и число 5 и умножит на 50 полученную сумму. К этому результату необходимо прибавить номер месяца рождения (июль — 7, январь — 1), вслух назвать полученное число. Через секунду вы называете день и месяц рождения зрителя.

Секрет. Все очень просто. В уме от того числа, которое назвал зритель, отнимите 250. У вас должно выйти трехзначное или четырехзначное число. Первая и вторая цифры — день рождения, две последние — месяц.

Дмитрий Коробченко:

Фокус относится к случаю (2). Загадан день рождения. День — X, месяц — Y. Оба числа являются не более чем двузначными. Зритель выполняет следующие операции:

В уме отнимаем 250:

Так как Y — не более чем двузначное число, в получившемся числе [W=X*100+Y] месяц Y и день X никак не перемешаются. Поэтому последние две цифры числа W — это месяц Y, остальные — день X.

Пример:

Ответ: X, Y


3. Разгаданный результат математических вычислений

Вам понадобятся: заранее приготовленные листы бумаги, карандаши или ручки, калькуляторы.

Содержание фокуса. Предложите зрителям задумать трехзначное число и записать его на бумаге. При загадывании числа должно быть выполнено одно условие: цифра сотен не должна быть равна цифре единиц и не должна быть на единицу меньше или больше неё. Если вы ещё путаетесь в сотнях и единицах, то на первом месте в трехзначных числах стоят сотни, на втором десятки, на третьем единицы (например, подойдёт число 531).

Пример. Допустим, это и есть число 531. Теперь зрители должны перевернуть задуманное число, то есть написать цифры в обратном порядке (135). Затем зрители должны взять эти два числа и из большего вычесть меньшее (531 — 135). Получившуюся разницу снова нужно перевернуть (396; 693) и сложить эти два числа (396 + 693). Потом один из зрителей должен прибавить к полученной сумме 100, второй — 200, третий — 300 и так далее. Теперь вы можете отгадать, что получилось у каждого зрителя, но при том условии, что они к своему последнему числу прибавят цифру 1 089. У первого зрителя, прибавлявшего 100, получится 1 189, у второго — 1 289, у третьего — 1 389.

Секрет фокуса. Для того чтобы узнать, что получилось, вам не нужно знать задуманное число. Главное — прибавлять к числу 1 089 то число (100, 200, 300, 400…), которое прибавлялось в самом конце. Для того чтобы не перепутать, у кого что получилось, в самом конце фокуса можно раздать карточки с цифрами 100, 200, 300 и попросить держать их при отгадывании конечного результата.

Дмитрий Коробченко:

Примечание: Порой в фокусах встречаются различные операции над цифрами, которые входят в состав используемых чисел. В таком случае полезно пользоваться тем фактом, что число с цифрами a, b,c, записанное как «abc», представимо в виде:

Например:

Фокус относится к случаю (1). Загадано трёхзначное число, X, записанное как «abc». Цифра сотен — a. Цифра десятков — b. Цифра единиц — c. То есть:

По условию:

Зритель выполняет следующие операции. Перевернуть число:

Вычесть из большего числа меньшее (допустим, a > c, в противном случае всё будет так же, просто a и c поменяются ролями):

Для дальнейшего действия нам необходимо представить число («abc» — «cba») как «def», то есть найти его сотни, десятки и единицы.

Все такие двузначные числа можно найти в таблице умножения (18, 27, 36, 45, 54, 63, 72, 81), и они обладают следующим свойством: сумма цифр такого числа равна 9. Запишем 9*t как «df»:

Вернёмся к числу «abc» — «cba»:

Дальнейшее действие — получившееся число снова перевернуть и сложить с предыдущим:

В результате мы получили число 1089 независимо от изначально загаданного числа. Далее к этому числу мы просим прибавить 100, 200 или 300 и получаем соответственно 1189, 1289 или 1389.

Ответ: 1189, 1289 или 1389 (в зависимости от зрителя).


4. Угадываем задуманное число

Вам понадобятся: заранее приготовленные листы бумаги (по числу зрителей), карандаши или ручки, калькуляторы.

Содержание фокуса. Предложите зрителям задумать двузначное число. Теперь пусть они умножат число его десятков на 2, прибавят к этому произведению число 5, умножат эту сумму на 5, к полученному произведению прибавят 10 и число единиц того числа, которое задумали. Пусть любой зритель скажет, что у него получилось. Вычтите из полученного результата число 35 (лучше сделать это в уме или на калькуляторе, не посвящая в свои действия зрителей), и вы сможете назвать задуманное зрителями число.

Пример. Все основано на математических закономерностях, о которых вашим зрителям знать необязательно. Как это выглядит в реальном фокусе? Например, зритель задумал число 38: 3 десятка и 8 единиц. Умножаем 3 на 2, получается 6. Прибавляем к 6 число 5, получаем 11. Умножаем эту сумму на 5, получаем 55. Прибавляем 10 и получаем 65. Прибавляем число единиц (8) задуманного числа. Получаем 73, вычитаем 35. В итоге задуманное число — 38.

Дмитрий Коробченко:

Фокус относится к случаю (2). Загадано двузначное число X, записанное как «ab»:

Зритель выполняет следующие операции:

Ответ от зрителя — Z. В уме отнимаем 35:

Ответ: X


5. Фокус с отгадыванием чисел

Вам понадобятся: заранее приготовленные листы бумаги (по числу зрителей), карандаши или ручки (по числу зрителей), калькуляторы.

Содержание фокуса. Попросите зрителей задумать какое-нибудь число. Вопрос вы можете задать абсолютно любой, например: сколько дней в неделю вы хотели бы кататься на велосипеде, есть манную кашу, не ходить в школу, бегать по лужам. Весь смысл не в вопросе, а в задуманном зрителями числе. Раздайте зрителям бумажки и ручки и попросите письменно ответить на ваш вопрос. Пусть каждый напишет, сколько дней в неделю он хотел бы есть морковку.

Теперь пусть каждый умножит это число на 2, затем к полученному числу морковок прибавит 5, после чего умножит эту сумму на 50. Теперь пусть каждый сделает следующее: если в этом году уже был день рождения, прибавить 1 750, если нет — 1 749. Теперь из этого числа каждый должен вычесть свой год рождения и к этому числу прибавить 7.

Теперь попросите любого из зрителей назвать получившуюся цифру. Должно получиться двузначное или трёхзначное число. Первая цифра — количество морковок, остальные — возраст человека.

Секрет. Секрет фокуса в тех числах, которые вы заставляете их прибавлять, отнимать, делить.

Пример. Допустим, вы загадали 2 дня в неделю для поедания морковки. Теперь умножьте 2 на 2, получится 4. Потом к 4 прибавьте 5, получится 9, затем 9 умножьте на 50, получится 450. Допустим, ваш день рождения 18 июля 1997 года. Например, сейчас сентябрь и ваш день рождения уже прошёл. Значит, прибавьте к 450 число 1 750, получится 2 200. Теперь из числа 2 200 вычтите год рождения 1997, получится 203, к этому числу прибавьте 7. Результат — 210 (2 дня и 10 лет).

Во втором случае из числа 2 199 вычтите 1 997, получится число 202, прибавьте 7, получится 209. Значит, загадано 2 дня морковки и 9 лет загадавшему.

Совет. Перед выполнением этого математического фокуса раздайте зрителям калькуляторы, чтобы они не ошиблись в вычислениях, а для себя на первое время запишите на карточке порядок действий с цифрами: на что умножить, что прибавить, из чего вычесть.

Дмитрий Коробченко:

Фокус относится к случаю (2). Но этот фокус работает только в 2007 году. Для других годов нужно заменить число 1750 на другое.

Загадано число морковок X и возраст зрителя Y. Также в задаче участвуют:

Зритель выполняет следующие операции:

Ответ от зрителя — W.

Если возраст зрителя меньше 100 лет, то в получившемся числе [W=100*X+Y] возраст Y и количество морковок X никак не перемешаются. Последние две цифры числа W — это возраст Y, остальные — количество морковок X.

Пример:

Ответ: X, Y


ЧИТАЙТЕ ТАКЖЕ:

Математика в школе: 9 вещей, которые бесят

10 математических секретов, которые научат легко считать в уме

Как математика спасла мир (и чуть не уничтожила)

Что спросить у «МЕЛА»?
Комментарии(2)
Анна Мукасеева
Что если это 1 морковка? Тогда не получается
Sergey Andreev
задача про морковки применима к 2007у году-на 2022 корректировка 15 лет…прибавлять надо 1765…
Больше статей